Statements

<statement> ::= <ALGOL unconditional statement>

’ <conditicnal statement> |

<for statement> |

<connection statement>

<unlabelled basic statement> ::= <assignment statement> |
<go to statement> |
<dummy statement> |
<procedure statement> |
<activation statement> |

<object generator>

<conditional statement> ::= <ALGOL conditional statement> |

<if clause><connection statement>

For <connection statement> see section 7.2.

For <activation statement> see section 14.2.3,

Assignment statements

Syntax

<assignment statement> ::= <value assignment>[
<reference assignment>
“value left part> ::= <variable>|
<procedure identifier>|
<simple text expression>
<value right part> ::= <value expression> |
<text value>|
<value assignment>
<value assignment>::=
<value left part> := <value right part>
<reference left part> ::= <variable> |
<procedure identifier>
<reference right part> ::= <reference expression>i
<reference assignment>
<reference assignment> ::=
<reference left part> :- <reference right part>



-.44_.
Semantics

The operator ":=" (read: “becomes") indicates the
as;ignment of a value to the value type variable

or value type procedure identifier which is the left
part of the value assignment or the assignment of a
text value to the text object referenced by the left
part.

The operator ":-" (read: "denotes") indicates the
assignment of a reference to the reference type
variable or reference type procedure identifier which

is the left part of the reference assignment.

A procedure identifier in this context designates
a memory device local to the procedure instance.
This memory device is initialized upon procedure

entry according to section 3.2.4.

The value or reference assigned is a suitably trans-
formed representation of the one obtained by evalu-
ating the right part of the assignment. If the right
part is itself an assignment, the value or reference

obtained is a copy of that of its constituent left

part after that assignment operation has been completed.

Any expression which is, or is part of, the left
part of an assignment is evaluated prior to the

evaluation of the right part.

For a detailed description of the text value assign-
ment, see section 10.6. There is no value assign-

ment operation for objects.



AN

<
)

6.1.2.1

_.45..

The type of the value or reference obtained by evaluating
the right part, must coincide with the type of the
left part, with the exceptions mentioned in the following

.
sections.

If the left part of an assignment is a formal parameter,
and the type of the corresponding actual parameter does
not coincide with that of the formal specification,
then the assignment operation is carried out in two

steps.

1) An assignment is made to a fictitious variable of

the type specified for the formal parameter.

2) An assignment statement is executed whose left part
is the actual parameter and whose right part is the
fictitious variable.

The value or reference obtained by evaluating the

assignment is, in this case, that of the fictitious

variable.

For text reference assignment see section 10.5,

Arithmetic value assignment

In accordance with ALGOL 60, any arithmetic value may
be assigned to a left part of type real or integer.
If necessary, an appropriate transfer function is invoked.

Example:
Consider the statement (not a legal one in ALGOL 60):
X =1 :=Y 1= F := 3,14

where X and Y are real variables, i is an integer

variable, and F is a formal parameter called by



- 46 -

name and specified real. If the actual parameter for

F is a real variable, then X, i, Y and F are given the
values 3,3,3.14 and 3.14 respectively. If the actual
parameter is an integer variable, the respective values
will be 3,3,3.14 and 3.

6.1.2.2 Object reference assignment

Let the left part of an object reference assignment

be qualified by the class Cl, and let the right part

be qualified by Cr. If the right part is itself a
reference assignment, Cr is defined as the qualification
of its constituent left part. Let V be the value
obtained by evaluating the right part. The legality

and effect of the reference assignment depend on

relationships between Cr, Cl and V.

Case 1. C(Cl is of the class Cr or outer to Cr:
The reference assignment is legal and the

assignment operation is carried out.

Case 2. Cl is inner to Cr:
The reference assignment is legal. The"
assignment operation is carried out if V
is none or is an object belonginy to the

cdass Cl or innracters

class Cl or a class inner to Cl. If not,
the execution of the reiterence assignment

constitutes a run time error,.

Case 3. Cl and Cr satisfy neithc¢r of the above
relations:

The reference assignment is illegal.

Similar rules apply to reference assignments implicit

in for clauses and the transmission of parameters.



3

_47...
Example 1:

Let "Gauss” be the class declared in the example of

the seétion 2.2.

ref (Gauss) G5, G10;

G5 1~ new Gaués(S); G1l0 :- new Gauss(10);

The values of G5 and Gl0 are now Gauss objects.

See also example 1 of section 7.1,2.

Examgle 2:

Let "point” and "polar” be the classes declared in

the example of section 2.2.2.

ref (point) Pl, P2; ref (polar) P3;

Pl :- new polar (3,4); P2 :- new paint (5,6);
Now the statement "P3 :- P1" assigns to P3 a reference

to the "polar” object which is the value of P1. The

statement "P3 :- P2" would cause a run time error.

For statements

Syntax

<controlled variable> ::= <simple variable>

<controlled statement> ::= <statement>

<for statement> ::= <for clause><controlled statement>
<label> : <for statement> |

<for clause> ::= for <controlled variable>

<for right part> do

<for right part> ::= :=<value for list>|
:—-<object for list>

<value for list>

<value for list element>]
<value for list>,

<value for list element>




...48_.

<object for list> ::= <object for list elementgl
<object for list>,
. <object for list element>
<value for list element> ::= <value expression> |
<arithmetic expression> step <arithmetic
expression> until <arithmetic exXpression>
<value expression> while <Boolcan eXpression>
<object for list element> ::= <object expression> |

<object expression> while <Boolean expression>
Semantics

A for clause causes the controlled statement to be
executed repeatedly zero or more times. Each execution
of the controlled statement is preceded by an assign-
ment to the controlled variable and a test to determine

whether this particular for list element is exhausted.

Assignments may change the value of the controlled

variable during execution of the controlled statement.

For list elements

The for list elements are considered in the order in
which they are written. When one for list element
is exhausted, control proceeds to the next, until
the last for list element in the list has been
exhausted. Execution then continues after the con-

trolled statement.

The effect of each type of for list element is

defined below using the following notation:

: controlled variable

value expression

object expression

arithmetic expression

Boolean cxpression

..

O wr O < 0O

: controlled statement



_49_

The effect of the occurrence of exXpressions as for
list elements may ke established by textual replace-

ment in the definitions.

,B,0 are different identifiers wiiich are not
used elsewhere in the program, o identifies a
non-local simple variable of the same type as

:= V;
S;

next for list element

2. A1 step A, until A,

C := A1;
0O := Az;
a: if 0 X(C-A3) >0 then go to 8;
S
G := Ay;
C :=C + 0;
go to o;

B: next for list element

if 7 B then go to B;
S;
go to o;

S;

next for list element



as C 1= O3
if 4B then go to B;
S;
go to a;

B: next for list element

The controlled variable

The semantics of this section (6.2) is valid when
the controlled variable is a simple variable which
is not a formal parameter called by name, or a

procedure identifier.

The cases of formal parameter called by name, pro-
cedure identifier, subscripted variable and remote
identifier are piesently under study by a Technical

Committee appointed by the SIMULA Standards Group,

To be valid, all for list elements in a for-
statement (defined by textual substitution,
section 6.2.3) must be semantically and syntact-

ically wvalid.
In particular each implied reference assignment
in cases 4 and 5 of section 6.2.3 is subject to

the rules of section 6.1.2.2.

The value of the controlled variable upon exit

Upon exit from the for statement, the controlled
variable will have the value given to it by the last

(explicit or implicit) assignment operation.



_.51_.

Labels local to the controlled statement

The controlled statement always-acts as if it were
a block. Hence, labels on or defined within the
controlled statement may not be accessed from with-

out the controlled statement.

Prefixed blocks

Syntax

<block> ::= <ALGOL block> |
<prefixed block>
<block prefix> ::= ‘
<class identifier><actual parameter part>

<main block> ::= <unlabelled block>|

<unlabelled compound>
<unlabelled prefixed block> ::=

<block prefix><main block>
<prefixed block> ::= <unlabelled prefixed block> |

<label>:<prefixed block>
Semantics

An instance of a prefixed block is a compound object
whose prefix part is an object of the class identified
by the block prefix, and whose main part is an instance
of the main block. The formal parameters of the former
are initialized as indicated by the actual parameters
of the block prefix. The concatenation is defined

by rules similar to those of section 2.2.2.
The following restrictions must be observed:
1) A class in which reférence is made to the class

itself through use of "this", is an illegal

block prefix.




.—52_

2) The class identifier of a block prefix must refer
to a class local to ithe smallest block enclosing
the prefixed block. If that class identifier is that
of a system class, it refers to a fictitious decla-
ration of that system class occurring in the block

head of the smallest enclosing block.
An instance of a prefixed block i:¢ a detached object

(cf. section 9). A program is enclosed in a prefixed

block (cf. section 11) and is therefore detached.
Example:

Let "hashing” be the class declared in the exanple of

section 2.2.3. Then within the prefixed block,
hashing (64) begin integrr procedure he h(T); value T;
text T; ... ves s
end

a "lookup" procedure is available which makes use of

"

the "hash" procedure declared within the main bluck.



