12. Random drawing

12.1 Pseudo-random number streams

All random drawing procedures of SIMULA 67 are based on the technique of obtaining "basic drawings" from the uniform distribution in the interval $<0,1>$. A basic drawing will replace the value of a specified integer variable, say U, by a new value according to an implementation defined algorithm. As an example, the following algorithm may be suitable for binary computers:

$$U_{i+1} = \text{remainder } ((U_i \times 5^{2^p+1}) \div 2^n)$$

where U_i is the i'th value of U, n is an integer related to the size of a computer word and p is a positive integer. It can be proved that, if U_0 is a positive odd integer, the same is true for all U_i and the sequence U_0, U_1, U_2, \ldots is cyclic with period 2^{n-2}. (The last two bits of U remain constant, while the other $n-2$ take on all possible combinations).

The real numbers $u_i = U_i \times 2^{-n}$ are fractions in the range $<0,1>$. The sequence u_1, u_2, \ldots is called a "stream" of pseudo-random numbers, and u_i ($i = 1,2, \ldots$) is the result of the i'th basic drawing in the stream U. A stream is completely determined by the initial value U_0 of the corresponding integer variable. Nevertheless, it is a "good approximation" to a sequence of truly random drawings.
Random drawing procedures

The following procedures all perform a random drawing of some kind. Unless it is explicitly stated otherwise, the drawing is effected by means of one single basic drawing, i.e. the procedure has the side effect of advancing the specified stream by one step. The necessary type conversions are effected for the actual parameters, with the exception of the last one. The latter must always be an integer variable specifying a pseudo-random number stream.

1. **Boolean procedure** draw (a, U); name U; real a; integer U;

 The value is true with the probability a, false with the probability 1 - a. It is always true if a > 1 and always false if a < 0.

2. **integer procedure** randint (a, b, U); name U; integer a, b, U;

 The value is one of the integers a, a+1,, b-1, b with equal probability. If b < a, the call constitutes an error.

3. **real procedure** uniform (a, b, U); name U; real a, b; integer U;

 The value is uniformly distributed in the interval [a, b]. If b < a, the call constitutes an error.

4. **real procedure** normal (a, b, U); name U; real a, b; integer U;

 The value is normally distributed with mean a and standard deviation b. An approximation formula may be used for the normal distribution function.
(See M. Abramowitz & I. A. Stegun (ed):
Handbook of Mathematical Functions, National
Bureau of Standard Applied Mathematics Series
No. 55, p. 952 and C. Hastings formula (26.2.23)
on p. 933.)

5. \textbf{real} procedure negexp (a,U); \textbf{name} U; \textbf{real} a;
 \textbf{integer} U;

The value is a drawing from the negative
exponential distribution with mean $1/a$, defined
by $-\ln(u)/a$, where u is a basic drawing. This
is the same as a random "waiting time" in a
Poisson distributed arrival pattern with
expected number of arrivals per time unit
equal to a.

6. \textbf{integer} procedure Poisson (a,U); \textbf{name} U; \textbf{real} a;
 \textbf{integer} U;

The value is a drawing from the Poisson
distribution with parameter a. It is obtained
by $n+1$ basic drawings, u_i, where n is the
function value. n is defined as the smallest
non-negative integer for which

$$\sum_{i=0}^{n} u_i < e^{-a}$$

The validity of the formula follows from the
equivalent condition

$$\sum_{i=0}^{n} -\ln(u_i)/a > 1$$
where the left hand side is seen to be a sum of "waiting times" drawn from the corresponding negative exponential distribution.

When the parameter a is greater than some implementation defined value, for instance 20.0, the value may be approximated by entier (normal $(a,\sqrt{a}),U+0.5$) or, when this is negative, by zero.

7. real procedure Erlang (a,b,U); name U; integer U;
 real a,b;

 The value is a drawing from the Erlang distribution with mean $1/a$ and standard deviation $1/(a^2)$. It is defined by b basic drawings u_1, if b is an integer value,

 $$
 b \sum_{i=1}^{b} \ln(u_1) - \sum_{i=1}^{b} \frac{\ln(u_1)}{ab}
 $$

 and by $c+1$ basic drawings u_1 otherwise, where c is equal to entier (b),

 $$
 \sum_{i=1}^{c} \frac{\ln(u_1)}{ab} - (\sum_{i=1}^{c+1} \frac{\ln(u_1)}{ab}) - (b-c) \ln(u_1)
 $$

 both a and b must be greater than zero.

 The last formula represents an approximation.

8. integer procedure discrete (A,U); name U;
 real array A; integer U;

 The one-dimensional array A, augmented by the element 1 to the right, is interpreted as a step function of the subscript, defining a discrete (cumulative) distribution function. The array is assumed to be of type real.
The function value is an integer in the range \([\text{lsb}, \text{usb}+1]\), where \(\text{lsb}\) and \(\text{usb}\) are the lower and upper subscript bounds of the array. It is defined as the smallest \(i\) such that \(A[i] > u\), where \(u\) is a basic drawing and \(A[\text{usb}+1] = 1\).

9. \textbf{real procedure linear (A,B,U); name U;}
 \textit{real array A,B; integer U;}

The value is a drawing from a (cumulative) distribution function \(F\), which is obtained by linear interpolation in a non-equidistant table defined by \(A\) and \(B\), such that \(A[i] = F(B[i])\).

It is assumed that \(A\) and \(B\) are one-dimensional \textbf{real} arrays of the same length, that the first and last elements of \(A\) are equal to 0 and 1 respectively and that \(A[i] \geq A[j]\) and \(B[i] \geq B[j]\) for \(i > j\). If any of these conditions are not satisfied, the effect is implementation defined.

The steps in the function evaluation are:

1. draw a uniform \(<0,1>\) random number, \(u\).

2. determine the lowest value of \(i\), for which \(A[i-1] \leq u \leq A[i]\)

3. compute \(D = A[i] - A[i-1]\)

4. if \(D = 0\): linear \(= B[i-1]\)

 if \(D \neq 0\): linear \(= B[i-1] + \frac{(B[i] - B[i-1])}{D} (u-A[i-1])\)
10. integer procedure histd (A,U); name U; real array A;
 integer U;

The value is an integer in the range \([\text{lsb}, \text{usb}]\),
where \(\text{lsb}\) and \(\text{usb}\) are the lower and upper subscript
bounds of the one-dimensional array \(A\). The latter
is interpreted as a histogram defining the relative
frequencies of the values.